
Functions

Built-in functions
You’ve used several functions already

>>> len("ATGGTCA")
7
>>> abs(-6)
6
>>> float("3.1415")
3.1415000000000002
>>>

What are functions?
A function is a code block with a name

>>> def hello():
... print "Hello, how are you?"
...
>>> hello()
Hello, how are you?
>>>

Functions start with
‘def’

>>> def hello():
... print "Hello, how are you?"
...
>>> hello()
Hello, how are you?
>>>

Then the name

>>> def hello():
... print "Hello, how are you?"
...
>>> hello()
Hello, how are you?
>>>

This function is named ‘hello’

The list of parameters
The parameters are always listed in parenthesis.

There are no parameters in this function
so the parameter list is empty.

>>> def hello():
... print "Hello, how are you?"
...
>>> hello()
Hello, how are you?
>>>

(I’ll cover parameters in more detail soon)

A colon
A function definition starts a new code block.

The definition line must end with a colon (the “:”)
Just like the ‘if ’, and ‘for’ statements.

>>> def hello():
... print "Hello, how are you?"
...
>>> hello()
Hello, how are you?
>>>

The code block

>>> def hello():
... print "Hello, how are you?"
...
>>> hello()
Hello, how are you?
>>>

These are the statements that are run when the
function is called. They can be any Python

statement (print, assignment, if, for, open, ...)

Calling the function
When you “call” a function you ask Python

to execute the statements in the code
block for that function.

>>> def hello():
... print "Hello, how are you?"
...
>>> hello()
Hello, how are you?
>>>

Which function to call?

>>> def hello():
... print "Hello, how are you?"
...
>>> hello()
Hello, how are you?
>>>

Start with the name of the function.
In this case the name is “hello”

List any parameters

>>> def hello():
... print "Hello, how are you?"
...
>>> hello()
Hello, how are you?
>>>

The parameters are always listed in parenthesis.
There are no parameters for this function

so the parameter list is empty.

And the function runs

>>> def hello():
... print "Hello, how are you?"
...
>>> hello()
Hello, how are you?
>>>

Arguments and
Parameters

(Two sides of the same idea)

Most of the time you don’t want the
function to do the same thing over and

over. You want it to run the same algorithm
using different data.

Hello, <insert name here>

>>> def hello(name):
... print "Hello", name
...
>>> hello("Andrew")
Hello Andrew
>>>

Say “Hello” followed by the person’s name

In maths we say “the function is parameterized by
the person’s name”

Change the function definition

>>> def hello(name):
... print "Hello", name
...
>>> hello("Andrew")
Hello Andrew
>>>

The function now takes one parameter. When the
function is called this parameter will be accessible using

the variable named name

Calling the function

>>> def hello(name):
... print "Hello", name
...
>>> hello("Andrew")
Hello Andrew
>>>

The function call now needs one argument.
Here I’ll use the string “Andrew”.

And the function runs

>>> def hello(name):
... print "Hello", name
...
>>> hello("Andrew")
Hello Andrew
>>>

The function call assigns the string “Andrew”
to the variable “name” then does the

statements in the code block

Multiple parameters
Here’s a function which takes two parameters

and subtracts the second from the first.

>>> def subtract(x, y):
... print x-y
...
>>> subtract(8, 5)
3
>>> Two parameters in the call

Two parameters in the definition

Returning values
Rarely do functions only print.

More often the function does something and
the results of that are used by something else.

For example, len computes the length of a string
or list then returns that value to the caller.

subtract doesn’t return
anything

>>> def subtract(x, y):
... print x-y
...
>>> x = subtract(8, 5)
3
>>> print x
None
>>>

By default, a function returns the special value None

The return statement

>>> def subtract(x, y):
... return x-y
...
>>> x = subtract(8, 5)
>>> print x
3
>>>

The return statement tells Python to exit
the function and return a given object.

You can return anything (list, string, number,
dictionary, even a function).

Making a function
Yes, we’re going to count letters again.

seq = "ATGCATGATGCATGAAAGGTCG"
counts = {}
for base in seq:
 if base not in counts:
 counts[base] = 1
 else:
 counts[base] = counts[base] + 1

for base in counts:
 print base, “=”, counts[base]

A solution yesterday’s #1 (except for the raw_input)

Identify the function
I’m going to make a function which counts bases.

What’s the best part to turn into a function?

seq = "ATGCATGATGCATGAAAGGTCG"
counts = {}
for base in seq:
 if base not in counts:
 counts[base] = 1
 else:
 counts[base] = counts[base] + 1

for base in counts:
 print base, “=”, counts[base]

Identify the input

seq = "ATGCATGATGCATGAAAGGTCG"
counts = {}
for base in seq:
 if base not in counts:
 counts[base] = 1
 else:
 counts[base] = counts[base] + 1

for base in counts:
 print base, “=”, counts[base]

In this example the sequence can change.
That makes seq a good choice as a parameter.

Identify the algorithm

seq = "ATGCATGATGCATGAAAGGTCG"
counts = {}
for base in seq:
 if base not in counts:
 counts[base] = 1
 else:
 counts[base] = counts[base] + 1

for base in counts:
 print base, “=”, counts[base]

This is the part of your program
which does something.

Identify the output

seq = "ATGCATGATGCATGAAAGGTCG"
counts = {}
for base in seq:
 if base not in counts:
 counts[base] = 1
 else:
 counts[base] = counts[base] + 1

for base in counts:
 print base, “=”, counts[base]

The output will use the data computed
by your function...

Identify the return value

seq = "ATGCATGATGCATGAAAGGTCG"
counts = {}
for base in seq:
 if base not in counts:
 counts[base] = 1
 else:
 counts[base] = counts[base] + 1

for base in counts:
 print base, “=”, counts[base]

... which helps you identify the return value

Name the function
First, come up with a good name for your function.

It should be descriptive so that when you or
someone else sees the name then they have an idea

of what it does.

Good names Bad names

count_bases
count_letters
countbases

do_count
count_bases_in_sequence

CoUnTbAsEs
QPXT

Start with the ‘def’ line
def count_bases(seq):

The function definition starts with a ‘def’

It is named
‘count_bases’

It takes one parameter,
which will be accessed using

the variable named ‘seq’

Remember, the def line ends with a colon

Add the code block
def count_bases(seq):
 counts = {}
 for base in seq:
 if base not in counts:
 counts[base] = 1
 else:
 counts[base] = counts[base] + 1

Return the results
def count_bases(seq):
 counts = {}
 for base in seq:
 if base not in counts:
 counts[base] = 1
 else:
 counts[base] = counts[base] + 1
 return counts

Use the function
def count_bases(seq):
 counts = {}
 for base in seq:
 if base not in counts:
 counts[base] = 1
 else:
 counts[base] = counts[base] + 1
 return counts

input_seq = “ATGCATGATGCATGAAAGGTCG”
results = count_bases(input_seq)
for base in results:
 print base, “=”, counts[base]

Use the function
def count_bases(seq):
 counts = {}
 for base in seq:
 if base not in counts:
 counts[base] = 1
 else:
 counts[base] = counts[base] + 1
 return counts

input_seq = “ATGCATGATGCATGAAAGGTCG”
results = count_bases(input_seq)
for base in results:
 print base, “=”, counts[base]

Notice that the variables
for the parameters and
the return value don’t
need to be the same

Interactively
>>> def count_bases(seq):
... counts = {}
... for base in seq:
... if base not in counts:
... counts[base] = 1
... else:
... counts[base] = counts[base] + 1
... return counts
...
>>> count_bases("ATATC")
{'A': 2, 'C': 1, 'T': 2}
>>> count_bases("ATATCQGAC")
{'A': 3, 'Q': 1, 'C': 2, 'T': 2, 'G': 1}
>>> count_bases("")
{}
>>>

(I don’t even need a
variable name - just use

the values directly.)

Functions can call functions
>>> def gc_content(seq):
... counts = count_bases(seq)
... return (counts["G"] + counts["C"]) / float(len(seq))
...
>>> gc_content("CGAATT")
0.333333333333
>>>

Functions can be used
(almost) anywhere

>>> def polyA_tail(seq):
... if seq.endswith("AAAAAA"):
... return True
... else:
... return False
...
>>> if polyA_tail("ATGCTGTCGATGAAAAAAA"):
... print "Has a poly-A tail"
...
Has a poly-A tail
>>>

In an ‘if ’ statement

Functions can be used
(almost) anywhere

In an ‘for’ statement
>>> def split_into_codons(seq):
... codons = []
... for i in range(0, len(seq)-len(seq)%3, 3):
... codons.append(seq[i:i+3])
... return codons
...
>>> for codon in split_into_codons("ATGCATGCATGCATGCATGC"):
... print "Codon", codon
...
Codon ATG
Codon CAT
Codon GCA
Codon TGC
Codon ATG
Codon CAT
>>>

Exercise A
Make a function to add two numbers.

Use the following as a template for your program

def add(a, b):
 # ... your function body goes here

print "2+3 =", add(2, 3)
print "5+9 =", add(5, 9)

The output from your program should be

2+3 = 5
5+9 = 14

Exercise B
Modify your program from Exercise A to add three numbers.

Use the following as a template for your new program

def add3 # you must finish this line
 # then fill in the body

print "2+3+4 =", add(2, 3, 4)
print "5+9+10 =", add(5, 9, 10)

Exercise C
Use the count_bases function defined earlier to

reimplement Exercise 1 from yesterday. (That was
the one which asked for a sequence using

raw_input then printed the result.)

Exercise D
Use the count_bases function defined earlier to
reimplement Exercise 2 from yesterday. (That
was the one which printed count statistics for

every sequence in a data file.)

Exercise E
Last Friday’s Exercise 5 (”if and files”) asked you to write a

program which counts the number of sequences with certain
properties (eg, the number of sequences with length > 2000 and
%GC > 50%). Redo that exercise but this time use a function for

each of the tests. The code should look something like:

... define the functions first ...

num_over_1000 = 0 # initialize counters

for line in open(...):
 seq = line.rstrip()
 if is_over_1000(seq):
 num_over_1000 = num_over_1000 + 1
 ... other if cases ...

... print the results ...

Exercise F
Look at your DNA to protein translation program.

Identify the parts that could be turned into a
function. Modify your program accordingly. When

finished, ask me to review what you did.

